❔Можно ли использовать MSE или MAE для задач классификации
Обычно для классификации используют логистическую или кросс-энтропийную функцию потерь, но в ряде случаев MSE (среднеквадратичную ошибку) или MAE (среднюю абсолютную ошибку) всё же применяют:
🔸Бинарная классификация с непрерывным выходом: если модель выдаёт не чистый класс, а значение от 0 до 1, можно рассматривать задачу как регрессию и сравнивать это значение с меткой (0 или 1) с помощью MSE или MAE. Но важно понимать, что такой подход даёт слабые градиенты и может сходиться медленнее, чем при использовании кросс-энтропии.
🔸Порядковая классификация (ordinal): если классы имеют естественный порядок (например, маленький < средний < большой), использование MSE или MAE может быть оправдано — модель учится предсказывать ранг, и ошибки ближе к истине наказываются слабее, чем ошибки, далёкие от неё.
⚠️Потенциальные проблемы: • При несбалансированных классах MSE/MAE могут вводить в заблуждение • Такие функции не дают вероятностной интерпретации, как логистическая регрессия • Пороговое определение класса (например, всё, что > 0.5 = класс 1) может быть плохо откалибровано
❔Можно ли использовать MSE или MAE для задач классификации
Обычно для классификации используют логистическую или кросс-энтропийную функцию потерь, но в ряде случаев MSE (среднеквадратичную ошибку) или MAE (среднюю абсолютную ошибку) всё же применяют:
🔸Бинарная классификация с непрерывным выходом: если модель выдаёт не чистый класс, а значение от 0 до 1, можно рассматривать задачу как регрессию и сравнивать это значение с меткой (0 или 1) с помощью MSE или MAE. Но важно понимать, что такой подход даёт слабые градиенты и может сходиться медленнее, чем при использовании кросс-энтропии.
🔸Порядковая классификация (ordinal): если классы имеют естественный порядок (например, маленький < средний < большой), использование MSE или MAE может быть оправдано — модель учится предсказывать ранг, и ошибки ближе к истине наказываются слабее, чем ошибки, далёкие от неё.
⚠️Потенциальные проблемы: • При несбалансированных классах MSE/MAE могут вводить в заблуждение • Такие функции не дают вероятностной интерпретации, как логистическая регрессия • Пороговое определение класса (например, всё, что > 0.5 = класс 1) может быть плохо откалибровано
Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.Библиотека собеса по Data Science | вопросы с собеседований from pl